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Abstract Extended feature models enable the expression

of complex cross-tree constraints involving feature attri-

butes. The inclusion of attributes in cross-tree relations not

only enriches the constraints, but also engenders an

extended type of variability that involves attributes. In this

article, we elaborate on the effects of this new variability

type on feature models. We start by analyzing the nature of

the variability involving attributes and extend the defini-

tions of the configuration and the product to suit the

emerging requirements. Next, we propose classifications

for the features, configurations, and products to identify

and formalize the ramifications that arise due to the new

type of variability. Then, we provide a semantic foundation

grounded on constraint satisfaction for our proposal. We

introduce an ordering relation between configurations and

show that the set of all the configurations represented by a

feature model forms a semilattice. This is followed by a

demonstration of how the feature model analyses will be

affected using illustrative examples selected from existing

and novel analysis operations. Finally, we summarize our

experiences, gained from a commercial research and

development project that employs an extended feature

model.

Keywords Software product lines � Extended feature

models � Variability management � Variability involving

attributes

1 Introduction

Over the years, the idea of building platforms to develop

product families has been realized successfully in many

areas of engineering. The benefits offered by mass cus-

tomization such as a reduced development cost, enhanced

quality of the products, decreased maintenance cost and

simplified project management have resulted in a growing

tendency toward the use of product lines [40]. Within

recent decades, as software products and software-inten-

sive systems became more complex, software researchers

and practitioners inspired by the success stories initiated

the adoption of product lines within the realm of software

engineering. Since then, Software Product Lines (SPLs)

have attracted increasing attention in both academic and

industrial communities.

SPLs offer effective strategies to develop families of pro-

ducts. The members of a product family share common con-

cepts that connect them to the family and include varying

properties that make them distinguishable products. Thus,

capturing commonality and variability in SPLs is a key issue,

and the success of a product family is highly dependent on

effective variability management [8]. Feature modeling [26]

has proven to be an effective activity for modeling and man-

aging commonality and variability in product families. Since

the introduction of feature models, important extensions have

been devised in response to growing expectations, and con-

sequently, feature models have become more expressive.

One of the major extensions devised for feature models

is the introduction of feature attributes. These provide extra

information about the features in terms of measurable

characteristics and can figure in complex cross-tree rela-

tions. The inclusion of attributes in cross-tree relations

enriches the constraints, but introduces complications that

are addressed in this article.
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A recent proposal [31] enabled the automated analyses

of extended feature models that can include complex cross-

tree relations involving attributes. This work also pointed

to some of the complications that will arise. For instance,

with the inclusion of attributes in cross-tree relations, a

new variability type concerning attributes and their values

has arisen. With this extended variability, traditional con-

figuration and product specifications referring only to the

sets of features to be included or excluded are no longer

able to specify a product or a configuration precisely as

they do not refer to the attributes and their values.

As a hypothetical scenario, consider a software company

that designs computer games. The company wants to

market different versions of a game, in which some ver-

sions will include multiplayer capability and others will

not, and also the levels included in a game package may

differ. Thus, the company builds the extremely simplified

extended feature model depicted in Fig. 1.

First, it is assumed that only some of the levels, say 1

through 4, are suitable for multi-play. Clearly, an actual

product derived from this model must obey all of the

requirements. Thus, the customer should not encounter a

product that is designed for multi-play that includes the

levels 5 through 10. However, the existing product defi-

nition (as given in [6]) considers only the features to be

included. Therefore, it is not possible to include informa-

tion regarding the values to be assigned to the attributes of

the included features. Obviously, this is not desirable since

it can affect the analyses performed on the model and the

products in an erroneous way. For instance, a product that

contains the features Game, Multiplayer, and Content

appears valid and marketable regarding the requirements

imposed by the model when we consider only the features.

However, if the value of the attribute levels is 6, this will be

a faulty product that promises multi-play, but the level

included is not suitable for multiple players.

In this article, we address this type of issue and elaborate

on the consequences. To highlight our motivations, we also

briefly present a commercial research and development

(R&D) project involving an extended feature model for a

mobile unit to be used for localization purposes in a

wireless sensor network (WSN). We discuss the effects of

the ideas proposed in this study through our experiences

gained from the R&D project in order to provide an insight

for the practitioners that would work with extended feature

models including complex constraints that involve

attributes.

The contributions of this article are summarized as

follows. We extend the definitions for configuration and

product specifications; this allows the feature models to

meet the novel requirements that emerge due to the use of

the extended variability. Using an example from an

industrial R&D project on the localization software family

for a WSN and a series of simpler additional examples, we

elaborate on the ramifications that originate from these

extensions. We delineate classifications for configurations

and products to categorize configurations/products with

common and different properties. We provide semantics

that are grounded in constraint satisfaction, for the exten-

ded definitions and the new categories. We introduce an

ordering relation between the configurations and products

that allows engineers to benefit from the rich literature on

partial orders and lattices. We discuss how existing ana-

lysis operations are affected by the extended definitions

and classifications using selected illustrative operations and

present reformulations and revised definitions for some of

these operations. Finally, we propose a number of new

analysis operations that the practitioners can make use of

when working with such extended models.

The remainder of this article is organized as follows.

Section 2 presents a brief background to basic, cardinality-

based and extended feature models and the analysis efforts.

In Sect. 3, we briefly present the R&D project. In Sect. 4,

we discuss a new variability type that has emerged due to

the inclusion of attributes in cross-tree relations and extend

the definitions for the configuration and product to meet the

emerging requirements. In Sect. 5, we present classifica-

tions for features, configurations, and products, establish a

semantic foundation for our proposal, and propose an

ordering relation between the configurations and products.

In Sect. 6, we discuss how the existing analysis operations

are affected by offering selected illustrative operation

examples. In Sect. 7, we present our experience gained

from the commercial R&D project to offer practitioners

insight into putting the new concepts into practice. In

Sect. 8, we discuss related work. In Sect. 9, we present a

discussion on an alternative approach and the challenges

ahead, and Sect. 10 contains our conclusions.

2 Background

2.1 Feature models

Since the introduction of feature models by Kang et al. [26]

as part of Feature Oriented Domain Analysis, these models

Fig. 1 The feature model for our hypothetical computer game family
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have been widely used in SPLs. We refer the reader to [43]

for a literature survey on feature models; here we briefly

discuss the basic, cardinality-based, and extended feature

models.

A feature is a distinguishable characteristic of a concept

(e.g., system, component and context) that is relevant to

some stakeholder of the concept [44]. A feature model is a

hierarchically arranged set of features showing the rela-

tions defining the composition rules among these features,

relations defining the cross-tree constraints, additional

information such as the issues/decisions that record various

trade-offs, and the rationale and justification for the feature

selection [26]. Feature models are often represented using

feature diagrams. For instance, Fig. 2 shows a feature

diagram of a feature model for a mobile phone family.

There are two types of relations in feature models:

decomposition relations defining the relation between a

parent feature and its child features, and cross-tree relations

that specify the constraints among arbitrary features.

If a feature is not included in a product, then none of its

children can be included. If a feature is included in a

product, then the decomposition relations determine whe-

ther its children will be included. If there is a mandatory

relation between a feature and its parent, then the child

feature is included in every product that includes the parent

feature. For instance, the feature Screen will be included in

every product that includes the feature Mobile Phone. If

there is an optional relation between a feature and its

parent, then the child feature may or may not be included in

a product that includes the parent feature. For instance,

some mobile phones that include the feature Mobile Phone

may include the feature Applications, whereas other phones

may not. When there is an alternative relation between a

feature and a group of its children, then only one of the

child features from the group will be incorporated into a

product that includes the parent feature. For instance, either

the feature Basic or the feature High Res (but not both)

must be included in every product that includes the feature

Screen. Finally, if there is an or relation between a feature

and a group of its children, then a non-empty subset of the

child features from the group must be incorporated into a

product that includes the parent feature. For instance, when

the feature Games are included, then one, two, or all three

of the features Backgammon, Tetris, and Chess must also

be included.

One of the major extensions to feature models has been

the introduction of cardinality-based decomposition rela-

tions. Multiplicities such as m–n have been proposed for

use as group cardinalities by Riebisch et al. [41], and by

Czarnecki et al. [15] as feature and group cardinalities in

decomposition relations. If there is a feature cardinality

relation in the form [m..n] between a feature and its parent,

then at least m, at most n clones of the child feature will be

included in every product that includes the parent feature.

For instance, zero, one, or two clones of the feature

Camera will be included in every product that includes the

feature Mobile Phone. When there is a group cardinality

relation in the form\m–n[between a feature and a group

of its children, then at least m, at most n of the child fea-

tures from the group must be incorporated into a product

that includes the parent feature. For instance, when the

feature Applications is included, then none, one, or two of

the features Java and Games must also be included.

If a feature X requires another feature Y, a product that

includes X must also include Y. For instance, every product

that includes Backgammon must also include Java. If a

feature X excludes another feature Y, inclusion of X in a

product implies the exclusion of Y from that product and

vice versa. For instance, no product can include both the

Basic and Chess features.

Fig. 2 A feature model for a mobile phone family
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2.2 Extended feature models

The introduction of feature attributes is an important

extension to feature models [13]. An attribute of a feature

is any characteristic of the feature that can be measured.

Every feature attribute belongs to a domain, the space of

possible values from which the attribute takes its values

[7]. For instance, the example diagram given in Fig. 3

represents an extended model since it has features with

attributes. The feature Memory has an attribute named size

(in gigabytes) with the domain Dsize, where we assume

Dsize = {4, 8, 16, 32}, and the feature Camera has an

attribute named resolution (in megapixels) with the domain

Dres, where we assume Dres = {5, 8, 13}. Generally, the

domain of an attribute can be a finite or an infinite set (e.g.,

a real interval); however, the current work is restricted to

finite sets as domains.

Extended feature models enable cross-tree constraints

involving attributes to be expressed. For instance, the

model given in Fig. 3 may include a cross-tree constraint

such as Chess requires Memory.size C8. These constraints

can also be combined using propositional logic connectives

to build more complex relations such as (Chess requires

Memory.size C 8) ^ (if Camera1.resolution[ 4 then

Camera1 requires HighRes). We refer the reader to [31] for

a context-free grammar that precisely formalizes the syntax

for relations in extended feature models.

2.3 Analysis of feature models

As feature modeling plays a key role in SPL engineering, it

is an important but challenging task to analyze the feature

models and reveal their characteristics. In the literature, a

number of analysis operations have been reported that can

extract information from feature models. Here we shall

briefly discuss some of these operations; for a more

detailed discussion of the definitions and practical uses of

the analysis operations on feature models, we refer the

reader to [6].

Besides feature models, the typical inputs to the analysis

operations are configurations and products, which are

defined as follows [6]:

Configuration: Given a feature model with a set of

features F, a configuration is a 2-tuple of the form (I, E)

such that I and E are two disjoint subsets of F, where I is

the set of features to be included, and E is the set of fea-

tures to be excluded. A configuration is called a full con-

figuration If I [ E = F, and a partial configuration

otherwise.

Product: A product is a full configuration. For the sake

of brevity, a product can be specified by only the set of

included features.

A number of analysis operations can be used to extract

information about the products represented by a given

model. For instance, the analysis operation valid product

can be used to answer the question whether a given product

is valid with respect to a given model. Another analysis

operation, namely all products, can be used to answer the

question ‘‘which products are represented by this model?’’

This operation can be used to identify products that can be

derived from the product line although they were not

considered in the initial scope. There are other analysis

operations to answer the questions related to the products

represented by a given model, such as the number of pro-

ducts represented by this model and which products rep-

resented by this model include a given configuration.

Some analysis operations can be used to extract infor-

mation about the features included in a model. For

instance, the analysis operation core features finds the set

of features that are included in all products represented by a

model. This operation can be used to identify the features

that should be supported by the core architecture. The

analysis operation variant features can be used to find the

set of features that are not included in all products. It is also

possible to find the set of dead features (i.e., features that

do not appear in any of the products), conditionally dead

features (i.e., features that become dead under certain cir-

cumstances), or false optional features (i.e., features that

are not modeled as mandatory despite being included in all

the products). These operations can be used to detect the

anomalies in the product line.

It is also possible to extract information about the model

itself or its relations with other models using analysis

operations. For instance, the analysis operation void feature

model can be used to check if a feature model is void (i.e.,

represents no products) or not. Some metrics such as

homogeneity (that indicates the degree to which a model is

homogeneous), or variability factor (i.e., the ratio between

the number of actual products represented and the number

Fig. 3 An extended feature model for a mobile phone family
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of potential products that can be represented) can be

computed using analysis operations. A more homogeneous

model would include a few features that are unique to

products, and this information can be used to determine

how closely the products are related to the family. Simi-

larly, the variability factor can be used to understand the

extent of the flexibility of the product line. It is also pos-

sible to discover whether two models are related (e.g., if

one is a generalization of another) by using appropriate

analysis operations; this relationship can be useful in

understanding how a feature model has evolved over time.

In industrial applications, feature models can rapidly

grow large; therefore, performing the analyses manually is

a tedious and error-prone task. Hence, automated support

for the analyses is extremely desirable. A number of pro-

posals reported in the literature have provided for auto-

mated analyses by mapping feature models to a variety of

other formalisms such as propositional logic, descriptive

logic, and constraint programming [6].

A recent study by Karataş et al. [31] established the

foundations for the constraint-programming-based analyses

of the extended feature models that include complex cross-

tree constraints involving attributes. The authors provided a

mapping from such extended feature models to constraint

logic programming over finite domains [CLP(FD)], which

enables the use of CLP(FD) solvers for feature model

analyses. This proposal allows the user to benefit from

many powerful techniques and tools offered by the CLP

community. The same authors proposed the use of global

constraints provided by CLP systems in feature model

analyses in [28]. However, from this enhancement, new

issues emerged due to the inclusion of attributes in cross-

tree constraints. An extended type of variability, variability

involving attributes, discussed in Sect. 4, is responsible for

these issues, and the effects of this new variability type will

be elaborated in the following sections.

3 A software product line for a localization family

in wireless sensor networks

WSNs are becoming more popular as low-cost sensors,

microcontrollers, and radio frequency transceivers enter the

markets. Localization in WSNs is a key technique that has

many areas of application such as location service, moni-

toring, tracking, rescue, coverage, and routing [12]. There

are various localization techniques reported in the litera-

ture. Cheng et al. [12] classify these techniques into two

main categories. The first category includes techniques that

adopt a centralized approach to compute the location of a

target/source node and includes methods for inferring the

location of a single target or the locations of multiple tar-

gets in WSNs or wireless binary sensor networks. The

second category consists of the methods to be used when

the node is to compute its self-location information. This

category is further divided into two subcategories: range-

free and range-based localization.

Range-free localization methods compute the location of

a node without measuring the absolute distances between

the unknown node and the beacon nodes, the nodes whose

locations are known by the unknown node [12]. For

instance, the hop-count-based localization method uses the

average hop distances in the computations instead of the

actual distances. Alternatively, the pattern-matching

localization method relies on the usage of pattern-matching

algorithms and a radio map, which is a database of radio

signals received at selected locations, where the current

observed radio signals are matched to the recorded values

in the map in order to determine the location of the node.

Range-based localization techniques rely on the actual

values (i.e., distances or angles) measured between the

unknown node and the beacon nodes to infer the location of

the unknown node. Cheng et al. [12] list four methods for

range-based localization: Received Signal Strength Indica-

tor (RSSI), Time of Arrival (ToA), Time Difference of

Arrival (TDoA), and Angle of Arrival (AoA). The RSSI

method uses the strength of the received radio signal to

determine the distance between the unknown node and the

beacon node. As radio signals decay on their voyage

through the air, this method estimates the distance between

the source and the receiver by measuring the decay in the

signal. The ToAmethod records the signal propagation time

to estimate the distance between the transmitter and the

receiver; this includes calculations that use the speed of the

signal. The TDoA method uses two different signals with

different propagation speeds (e.g., radio frequency and

ultrasound) in order to infer the distance using the delay

between the arrival times of the two signals. The AoA

method calculates the angle at which signals are received

and uses simple geometrical relations to infer the position of

the unknown node with respect to the beacon nodes.

When using a range-based localization technique, once a

sufficient number of distances or angles between the

unknown node and the beacon nodes are measured, the

unknown node can compute its location information using

different algorithms. For instance, when the distances are

available, the min–max algorithm, the maximum likelihood

algorithm, or the trilateration algorithm can be used [20],

and when the angles are available, the triangulation algo-

rithm can be executed [39].

KaVIS is a commercial R&D project funded by the

Republic of Turkey, Ministry of Science, Industry and

Technology (with grant number 603.TGSD.2012). KaVIS

aims to use the location information of a mobile unit in a

WSN in order to provide the user with context sensitive

data.

Requirements Eng (2016) 21:185–208 189
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KaVIS is planned to employ a range-based localization

technique to infer the location of a mobile unit. However,

there is no ‘‘best range-based localization technique’’ as

each approach has a number of advantages and disadvan-

tages when compared to the other range-based methods.

For instance, RSSI is an inexpensive approach since it can

work on low-cost chips, which come with ready-to-use

features, and unlike some of the other techniques, it

requires no additional hardware [12, 37, 50]. Moreover, it

requires relatively low-energy input [12]. However, RSSI

measurements highly suffer from noise and are very sen-

sitive to environmental effects [50]. Consequently, RSSI

provides less accurate results when compared to the other

methods [39]. Similarly, ToA approaches are also rela-

tively cheap as only low-cost chips with ready-to-use fea-

tures are required [50]. On the other hand, it is very

difficult to measure the time of the flight of the signal when

the distance to be measured is extremely small in com-

parison with the propagation speed; thus, ToA methods

produce highly noisy measurements and are over-sensitive

to environmental effects [50]. The TDoA technique

achieves high ranging accuracy at the expense of more

energy consumption and the requirement of extra hardware

that increases the cost of the solution [12]. The AoA

technique achieves very high accuracy and precision even

with a small number of beacons [39]. However, it is an

expensive solution since an antenna array or multiple

receivers are required by the nodes [50].

The algorithms used in the presence of distance mea-

surements also have advantages and disadvantages com-

pared with their alternatives [20]. For instance, the min–

max algorithm is the most efficient algorithm with respect

to computational complexity. However, the computational

cost increases when the number of beacons to be con-

sidered increases. The trilateration algorithm also has a

relatively low cost which is almost fixed since it uses only

three beacons in its computations. However, the trilater-

ation algorithm performs root operations and many divi-

sions, which can significantly decrease the efficiency of

the localization process if the microcontroller does not

employ a mathematical coprocessor. Both min–max and

trilateration algorithms produce significantly more accu-

rate results than the maximum likelihood algorithm when

there are only a few beacons to be considered. However,

studies have shown that the maximum likelihood algo-

rithm outperforms the other two when using six or more

beacons.

Thus, it is not possible to tailor a single localization

system that will achieve the best fit for different scenarios.

For instance, when the budget is the most important issue,

it is more attractive to build a localization system that uses

an RSSI- or a ToA-based technique. When high localiza-

tion accuracy is required, it is more desirable to employ a

TDoA- or AoA-based system. Due to these considerations,

KaVIS is planned to utilize a localization family that will

be able to derive different products for different

requirements.

The feature diagram that represents a simplified version

of the feature model for the mobile unit family in KaVIS,

MU, is shown in Fig. 4.

This model is an extended feature model since some of

the features have attributes. The feature Ultrasonic Recei-

ver has an attribute named frequency with the domain {22,

25, 40} in kHz, and the feature Temperature Sensor has an

attribute named accuracy with the domain {0.5, 1.0, 1.5} in

degrees Celsius.

4 Variability involving attributes

Considering the product P1 = {Mobile Unit, Method,

TDoA, Algorithm, Min–Max, Hardware, RF Transceiver,

Ultrasonic Receiver, Power Generator, RS232, MCU}

derived from the feature model MU, given in Fig. 4; since

the conventional product definition is built on specifying

the included features, P1 does not give any information

regarding the attributes. For instance, the feature Ultra-

sonic Receiver has an attribute frequency; however, P1

does not provide any information about the value(s) that

can be assigned to this attribute in P1. Thus, it is possible to

interpret this product specification as:

P1 = {…, Ultrasonic Receiver, …} where Ultrasonic

Receiver.frequency [ {22, 25, 40}

This interpretation does not have any variability in terms

of features; it is precise in terms of which features are

included in the product. However, the same precision is not

present for attributes; the value to be assigned to the

attribute frequency has not been determined yet. Thus,

there is no variability in terms of the features; however,

there is still variability in terms of the values that will be

assigned to the attributes of the included features. If we

proceed to remove this variability, we can derive three

different products from the product P1 as follows:

• P11 = {…,Ultrasonic Receiver,…} where Ultrasonic

Receiver.frequency = 22

• P12 = {…,Ultrasonic Receiver,…} where Ultrasonic

Receiver.frequency = 25

• P13 = {…,Ultrasonic Receiver,…} where Ultrasonic

Receiver.frequency = 40

Although these three products include exactly the same

set of features, they differ in the value assigned to the

attribute Ultrasonic Receiver.frequency; therefore, they can

be considered different products. Hence, removing the

variability in terms of features would not be enough to

achieve a fully specialized product, as the features

190 Requirements Eng (2016) 21:185–208
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themselves contain an extended type of variability, vari-

ability involving attributes.

As this example suggests, it is necessary to include

information in the product definition regarding the values

that can be assigned to the attributes that belong to the

included features. However, including this information

raises the question of how such sets of values will be

determined. In the previous example, two cases were

given: using the domain specified in the feature model for

the attribute under question (i.e., {22, 25, 40}), or using a

singleton that includes a value from the attribute’s specified

domain (e.g., {22}). However, the example below reveals

that the choices are not limited to these two cases.

Assume that there is a product P2 derived from MU such

that P2 = {Mobile Unit, Method, RSSI, Algorithm, Trila-

teration, Hardware, RF Transceiver, Power Generator,

RS232, MCU, Sensors, Temperature Sensor}. In this

product the feature Temperature Sensor has an attribute

named accuracy with the specified domain {0.5, 1.0, 1.5}.

Assume that there is a cross-tree constraint such that ‘‘RSSI

requires the measurement errors of the Temperature Sensor

to be at most 1.0 �C’’ (i.e., RSSI requires Temperature

Sensor.accuracy B1.0). A simple analysis reveals that P2

will fail this constraint if 1.5 is assigned to Temperature

Sensor.accuracy. Fortunately, it is possible to include this

information in P2 as follows:

P2 = {…, Temperature Sensor, …} where Temperature

Sensor.accuracy [ {0.5, 1.0}

The first example presented in this section shows that

information regarding the values that may be assigned to

the attributes of the included features must be included in a

product. The second example shows that, whenever pos-

sible, it is desirable to provide restrictions on the values

that may be assigned to the attributes of the included fea-

tures. Thus, the existent definitions for the configuration

and product must be revised. However, first, the

background must be prepared to provide the necessary

information regarding attributes in the configurations and

products.

Below we provide a set of values for each attribute of

the included features in the configuration and product

definitions. For example, let a be an attribute of a feature

that is included in a product, D its domain, and A the set of

values from which a is allowed to take a value. The cases

we examined show that A can be equal to D, A can be a

subset of D, or A can be a singleton that includes a member

of D, inclusively. A cannot be empty, otherwise the value

of a would be undefined in the product. Moreover, in order

to be consistent with the feature model, A cannot include a

value that D does not include. Based on these consider-

ations we introduce the notion of an admissible domain.

Definition 1 (A-domain): Given a feature model M, let

a be an attribute of a feature in M, and D the domain of a,

where D is a non-empty finite set. An Admissible Domain

of a is a non-empty subset of D. h

For instance, the sets {0.5}, {1.0}, {0.5, 1.0}, {0.5, 1.5},

{0.5, 1.0, 1.5} are all valid A-domains for the attribute

Temperature Sensor.accuracy, whereas {} and {0.5, 2.0}

are not. Now the configuration and product definitions can

be extended to suit the new requirements.

Definition 2 (Configuration, Product): Given a feature

model with a set of features F, a configuration is a triple of

the form (I, E, D), where (i) I and E are two disjoint subsets

of F (the set of features included and the set of features

excluded, respectively), (ii) D is a set of pairs such that the

first element (an attribute) [ the second element (an

A-domain) in the pairs, where every attribute that belongs

to a feature in I appears exactly in one pair. A full con-

figuration is called a product and can be represented by the

pair (I, D). h

Fig. 4 Feature model MU for

the KaVIS mobile unit family
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For instance, the products P1, P11, and P2 are repre-

sented as:

P1 = ({…,Ultrasonic Receiver,…}, {Ultrasonic Receiver.

frequency [ {22, 25, 40}})

P11 = ({…,Ultrasonic Receiver,…}, {Ultrasonic Receiver.

frequency = 22}})

P2 = ({…, Temperature Sensor,…}, {Temperature Sen-

sor.accuracy [ {0.5, 1.0}})

The reader will notice that we used the notation Ultra-

sonic Receiver.frequency = 22 instead of Ultrasonic

Receiver.frequency [ {22} in the product P11. From now

on we will use attribute = value as a shorthand for attri-

bute [ {value} when the A-domain of an attribute is a

singleton.

Since the A-domain of an attribute can be any non-

empty subset of its specified domain this definition allows

information to be provided about the restrictions on the

values that the attribute can take. The specified domain of

an attribute is totally acceptable as its A-domain in any

configuration or product, which establishes full backward

compatibility with the existing configuration and product

definitions as provided in [6].

5 Full specialization versus partial specialization

Since the new variability type introduced in the previous

section is defined at the level of attributes, some features

may contain such variability, whereas others may not. For

instance, consider the product P1. The feature Ultrasonic

Receiver contains variability since any value from the

A-domain {22, 25, 40} can be assigned to its attribute

frequency; thus, it is possible to further specialize this

feature. However, the features MCU or RS232 cannot be

further specialized as they do not contain variability

involving attributes. Hence, it is possible to classify the

features in a configuration as fully specialized features and

partially specialized features.

Definition 3 (F-feature): A feature is called a fully spe-

cialized feature in a configuration C if it is an included

feature in C (i.e., a member of the set of included features)

and has no variability involving attributes (i.e., it either has

no attributes or all of its attributes have singletons as their

A-domains). h

Definition 4 (P-feature): A feature is called a partially

specialized feature in a configuration C if it is an included

feature in C (i.e., a member of the set of included features)

and it has unresolved variability involving attributes (i.e.,

at least one of its attributes has two or more values in its

A-domain). h

A feature is classified as an F-feature or P-feature with

respect to a configuration. For instance, a feature X may be

an F-feature in one configuration and a P-feature in another

(e.g., Ultrasonic Receiver is an F-feature in the product

P11, whereas it is a P-feature in the product P1).

The classifications for configurations and products are as

follows.

Definition 5 (F-configuration, F-product): An F-config-

uration is a configuration (I, E, D) such that all the features

in I are F-features. A full F-configuration is called an F-

product. h

Definition 6 (P-configuration, P-product): A P-configu-

ration is a configuration (I, E, D) such that I contains at

least one P-feature. A full P-configuration is called a P-

product. h

For instance, product P1 is a P-product since it includes

a P-feature, namely Ultrasonic Receiver, whereas products

P11, P12, and P13 are all F-products since they include only

F-features.

A configuration where I = [ is considered to be an

F-configuration. From their definition, P-configurations

(and P-products) have unresolved variability involving

attributes, whereas F-configurations (and F-products) do

not.

As discussed in the previous section, the extended def-

initions we provide for the configuration and product

establish a full backward compatibility with the existing

definitions. However, it is worth noting that the extended

definition for the product causes a slight shift in the

understanding of products in the sense that the existing

product definition (i.e., that given in [6]) imposes on a

product to bear no variability, whereas the extended defi-

nition allows some products (i.e., P-products) to bear some

type of variability (i.e., variability involving attributes).

From this point of view, the F-products are the true

counterparts of the products in the sense of [6]. On the

other hand, P-products also obey all the requirements

imposed by the existing definition as they also do not bear

any variability in terms of features. Hence, we preferred to

follow the existing literature and use the term ‘‘product’’

for all the byproducts of the extended definition (i.e.,

F-product, P-product, and the two subtypes of P-product

presented in Sect. 5.3).

5.1 Semantics

The extended definitions provided for product and config-

uration are based on a syntactic notion. However, well-

formedness in syntactical sense does not necessarily imply

validity in the semantic domain, where the semantics are

grounded in constraint satisfaction. Since the analysis of
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feature models relies on the semantics of the models it is

necessary to establish the foundations for the semantics.

Therefore, in this section, we discuss the semantic validity

of two key entities in the feature model analysis, namely,

product and configuration.

Definition 7 (Valid F-product): Let M be a feature model

and P an F-product. P is semantically valid with respect to

M, denoted by M 7! P, if and only if P satisfies all the

constraints imposed in M. If M 7! P, then we can state that

P is represented by M. h

Example Consider the example extended feature model,

EM, given in Fig. 5.

Assume that we have the following cross-tree relations

in this model:

• (Ctr1) If F1.a C 3, then F1 requires F2.b C 3

• (Ctr2) If F1.a\ 3, then F1 requires F2.b\ 3

• (Ctr3) If F1.a C 5, then F1 requires F3

• (Ctr4) If F1.a\ 5, then F1 excludes F3

The F-products P3 = ({F0, F1, F2}, {F1.a = 2,

F2.b = 1}) and P4 = ({F0, F1, F2, F3}, {F1.a = 5,

F2.b = 3}) are valid with respect to EM, since they satisfy

all the constraints imposed by the relations in EM. On the

other hand, P5 = ({F0, F1}, {F1.a = 2}) is not valid, since

it fails the constraint imposed by the mandatory relation

between F0 and F2. Similarly, P6 = ({F0, F1, F2},

{F1.a = 2, F2.b = 4}) is not valid, since it fails the con-

straint imposed by Ctr2. h

We provide semantics for the P-products using the

semantic foundation established for the F-products.

Definition 8 (Valid P-product): Let M be a feature

model, P a P-product, and S the set of all F-products that

can be derived from P by assigning values to the attributes

from their respective A-domains. P is semantically valid

with respect toM, denoted byM 7! P, if and only if at least

one F-product in S is valid with respect to M. If M 7! P,

then we can state that P is represented by M. h

Example Reconsidering the example extended feature

model EM, assume that we have the P-product P7 = ({F0,

F1, F2}, {F1.a = 1, F2.b [ 2..4}). Three F-products can be

derived from P7:

• P71 = ({F0, F1, F2}, {F1.a = 1, F2.b = 2})

• P72 = ({F0, F1, F2}, {F1.a = 1, F2.b = 3})

• P73 = ({F0, F1, F2}, {F1.a = 1, F2.b = 4})

Although P72 and P73 are not valid, since they both fail

Ctr2, the P-product P7 is considered to be valid since P71 is

a valid F-product.

On the other hand, the P-product P8 = ({F0, F1, F2},

{F1.a [ 1..2, F2.b [ 3..4}) is not valid, since none of the

F-products, which can be derived from P8 and are listed

below, are valid with respect to EM.

• P81 = ({F0, F1, F2}, {F1.a = 1, F2.b = 3})

• P82 = ({F0, F1, F2}, {F1.a = 1, F2.b = 4})

• P83 = ({F0, F1, F2}, {F1.a = 2, F2.b = 3})

• P84 = ({F0, F1, F2}, {F1.a = 2, F2.b = 4}) h

The definition and the semantics of P-products allow

different representations for the same set of products. For

instance, consider the following three P-products repre-

sented by EM:

• P9 = ({F0, F1, F2}, {F1.a = 1, F2.b [ 1..2})

• P10 = ({F0, F1, F2}, {F1.a = 1, F2.b [ 1..3})

• P11 = ({F0, F1, F2}, {F1.a = 1, F2.b [ 1..4})

Although these three P-products are not the same, since

their D components are different, when we derive all valid

F-products from each one of them we obtain the same set of

F-products: {P12, P13} where P12 = ({F0, F1, F2},

{F1.a = 1, F2.b = 1}) and P13 = ({F0, F1, F2}, {F1.a = 1,

F2.b = 2}).Hence, there is a notion of equivalence emerging

from this observation, which we formalize as follows:

Definition 9 (Product equivalence): Let M be a feature

model, P and P0 two products represented by M, and S and

S0 the sets of all valid F-products that can be derived from

P and P0, respectively. The products P and P0 are consid-

ered to be equivalent if and only if S = S0. h

This formalization allows different types of products to

be equivalent. For instance, the F-product ({F0, F1, F2},

{F1.a = 1, F2.b = 2}) is equivalent to the P-product ({F0,

F1, F2}, {F1.a = 1, F2.b [ 2..4}). Two different P-pro-

ducts can be equivalent (e.g., P9 and P10); however, two

F-products are equivalent if and only if they are same.

We build the semantics for partial configurations on the

foundations established for the products.

Definition 10 (Valid partial F-configuration): Let M be a

feature model, C = (I, E, D) a partial F-configuration, and

S = {P1 = (I1, D1), …, Pn = (In, Dn)} the set of all

F-products that can be derived from C such that the fol-

lowing three conditions hold:

Fig. 5 An extended feature model, EM
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• I ( Ii,

• E \ Ii = [,

• D ( Di

for i = 1, …, n. C is semantically valid with respect to

M, denoted by M 7! C, if and only if at least one F-product

in S is valid with respect to M. h

Example Consider the extended feature model EM, and

the partial F-configuration C1 = ({F0, F1}, {F3},

{F1.a = 1}). There are five F-products that can be derived

from C, P1 = ({F0, F1}, {F1.a = 1}) and P2 = ({F0, F1,

F2}, {F1.a = 1, F2.b = 1}) through P5 = ({F0, F1, F2},

{F1.a = 1, F2.b = 4}). Although some of these F-products

are not valid (e.g., P1), we have at least one valid F-product

(e.g., P2); therefore, we state that EM 7! C1.

Next, consider the partial F-configuration C2 = ({F1},

{F3}, {F1.a = 6}). The list below contains all F-products

that can be derived from C2:

• ({F1}, {F1.a = 6})

• ({F0, F1}, {F1.a = 6})

• ({F1, F2}, {F1.a = 6, F2.b = 1}) through ({F1, F2},

{F1.a = 6, F2.b = 4})

• ({F0, F1, F2}, {F1.a = 6, F2.b = 1}) through ({F0, F1,

F2}, {F1.a = 6, F2.b = 4})

Although there are ten F-products that can be derived

from C2, none of them are valid (i.e., the first product fails

the mandatory relation between F0 and F1, the next five

products fail the mandatory relation between F0 and F2,

and the remainders fail Ctr3); therefore, we state that C2 is

not valid with respect to EM. h

Definition 11 (Valid partial P-configuration): Let M be a

feature model, C a partial P-configuration, and S the set of

all partial F-configurations that can be derived from C by

assigning values to the attributes from their respective

A-domains. C is semantically valid with respect to M,

denoted by M 7! C, if and only if at least one F-configu-

ration in S is valid with respect to M. h

Example Consider the extended feature model, EM, and

the partial P-configuration C3 = ({F0, F1, F2}, {}, {F1.a [
1..2, F2.b [ 2..3}). The set of all partial F-configurations

that can be derived from C3 by assigning values to the

attributes from their respective A-domains is {C31, C32,

C33, C34} where:

• C31 = ({F0, F1, F2}, {}, {F1.a = 1, F2.b = 2})

• C32 = ({F0, F1, F2}, {}, {F1.a = 1, F2.b = 3})

• C33 = ({F0, F1, F2}, {}, {F1.a = 2, F2.b = 2})

• C34 = ({F0, F1, F2}, {}, {F1.a = 2, F2.b = 3})

The configurations C31 and C33 are valid with respect to

EM, whereas C32 and C34 are not. Since we have at least

one valid partial F-configuration, C3 is a valid partial

P-configuration with respect to EM; thus, EM 7! C3.

Next, consider the partial P-configuration C4 = ({F1,

F3}, {}, {F1.a [ 2..4}). The set of all F-configurations that

can be derived from C4 is {C41, C42, C43} where:

• C41 = ({F1, F3}, {}, {F1.a = 2})

• C42 = ({F1, F3}, {}, {F1.a = 3})

• C43 = ({F1, F3}, {}, {F1.a = 4})

None of these F-configurations is valid; hence, C4 is not

a valid P-configuration with respect to EM. h

5.2 An ordering relation

In the literature there are reports of various efforts to derive

a product from a feature model in a stepwise manner. For

instance, Czarnecki et al. [15] proposed successive spe-

cializations over configurations, which they refer to as

staged configuration that eliminates some configuration

choices. They start with a feature model and continue the

specialization in stages until they reach a full configuration.

In another attempt, Stoiber et al. [47] begin with a feature

model, which employs the full variability for the family it

represents, and perform a stepwise variability binding

process to derive a single product represented by the model

while facilitating automated tool support. Bagheri et al. [2]

propose an interactive staged configuration approach and

tool support to enhance the quality and ease the configu-

ration process in the application engineering phase.

In this section we introduce an ordering relation between

configurations to decide which configuration is more gen-

eral (i.e., has more variability) and which is more spe-

cialized, in order to support the formal basis for product

derivation. We start with a definition of the relation for the

configurations that are defined as in [6] in order to cover

the existing approaches, and then extend the definition to

suit the extended configuration definition presented in

Sect. 4.

Definition 12 (Configuration ordering): Let C1 = (I1,

E1) and C2 = (I2, E2) be two configurations represented by

a feature model. C1 is less or equally specialized with

respect to C2, denoted by C1 B C2, if and only if the fol-

lowing two conditions hold:

• I1 ( I2,

• E1 ( E2 h

Given a set S, the binary relation B on S is a partial

order (or order) if and only if for all x, y, z [ S, B is

reflexive (i.e., x B x), antisymmetric (i.e., x B y and

y B x imply x = y), and transitive (i.e., x B y and

y B z imply x B z) [16]. Next, we show that the configu-

ration ordering is a partial order on the set of all valid
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configurations represented by a feature model (see

Appendix 1 for the proof of Proposition 1).

Proposition 1 Let M be a feature model, and S the set of

all valid configurations with respect to M. The configura-

tion ordering relation, denoted by B, is a partial order on

S. h

A set S is said to be a partially ordered set (or ordered

set), if it is equipped with a partial order relation [16].

Therefore, the set of all valid configurations represented by

a feature model is a (partially) ordered set.

If S is an ordered set and Q ( S, then an element l [ S is
called a lower bound of Q if l B q for all q [ Q [16]. More-

over, l is called the greatest lower bound ofQ (or the infimum

of Q) if t B l for all lower bounds t of Q. When Q has two

members such as Q = {x, y}, the infimum of Q can be

denoted as x ^ y (i.e., x meet y). Next, we show that given a

feature model it is always possible to find the infimum of any

two valid configurations represented by this feature model

(see Appendix 1 for the proof of Proposition 2).

Proposition 2 Let M be a feature model, and C1 = (I1,

E1) and C2 = (I2, E2) two valid configurations represented

by M. Then, C1 ^ C2 is Cinf = (I1 \ I2, E1 \ E2). h

If S is an ordered set and Q ( S, then an element u [
S is called an upper bound of Q if q B u for all q [ Q [16].

We do not always have an upper bound in the ordered set

of all valid configurations represented by a given feature

model. For instance, assume that f and g are two features

that exclude each other in a given feature model, and Cf

and Cg are two valid configurations such that Cf includes

the feature f and excludes the feature g, and Cg includes the

feature g and excludes the feature f. In any valid configu-

ration C = (I, E), where Cf B C, f must be included and

g must be excluded. However, if a valid configuration

C includes the feature f, then f 62 E; thus, Cg B C will not

be true. Hence, it is not possible to find an upper bound for

{Cf, Cg}.

If S is a non-empty ordered set, and x ^ y exists for all x,

y [ S, then S is called a meet semilattice [16]. Next, we

conclude that the set of all valid configurations represented

by a non-void feature model is a meet semilattice (see

Appendix 1 for the proof of Proposition 3).

Proposition 3 Let M be a feature model that is not void.

The set of all valid configurations represented by M is a

meet semilattice. h

If S is the set of all valid configurations represented by a

given non-void feature model, then the infimum of S will

be the empty configuration ([, [), since [ ( I and

[ ( E for any sets of features I and E. The maximal

elements will be the valid full configurations (i.e., valid

products).

Example Consider the feature model given in Fig. 6.

The Hasse diagram [16] depicting the meet semilattice

formed by the valid configurations represented by this

model is given in Fig. 7. h

Next, we extend the ordering relation to fit the extended

configuration definition.

Definition 13 (Extended configuration ordering): Let

C1 = (I1, E1, D1) and C2 = (I2, E2, D2) be two configura-

tions represented by a feature model, where D1 = {a1 [ A1-

1,…, an [ A1-n} and D2 = {a1 [ A2-1, …, an [ A2-n, …}. C1

is less or equally specialized with respect to C2, denoted by

C1 B C2, if and only if the following three conditions hold:

• I1 ( I2,

• E1 ( E2,

• A2-1 ( A1-1,…, A2-n ( A1-n h

Using the ideas presented in the proof of Proposition 1,

it can be shown that the extended configuration ordering is

a partial order on the set of all valid extended configura-

tions (both valid F-configurations and P-configurations)

represented by a given feature model. Here, we will show

that for any two valid extended configurations x and y, x ^
y exists (see Appendix 1 for the proof of Proposition 4).

Proposition 4 :Let M be an extended feature model, and

C1 = (I1, E1, D1) and C2 = (I2, E2, D2) two valid extended

configurations represented by M, where D1 = {a1 [ A1-1,

…, an [ A1-n, …} and D2 = {a1 [ A2-1, …, an [ A2-n, …};

thus, the set of attributes that appear in both D1 and D2 are

{a1,…, an}. Then, C1 ^ C2 is Cinf = (I1 \ I2, E1 \ E2, Dinf),

where Dinf = {a1 [ A1-1 [ A2-1, …, an [ A1-n [ A2-n}. h

Fig. 6 An example feature

model

Fig. 7 The Hasse diagram of the meet semilattice
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Finally, we conclude that the set of all valid extended

configurations represented by a non-void extended feature

model is a meet semilattice (see Appendix 1 for the proof

of Proposition 5).

Proposition 5 Let M be an extended feature model that is

not void. The set of all valid extended configurations rep-

resented by M is a meet semilattice. h

If S is the set of all valid extended configurations rep-

resented by a given non-void extended feature model, then

the infimum of S will be the empty configuration ([, [,

[). The maximal elements will be the valid full F-con-

figurations (i.e., valid F-products).

If S is an ordered set and any two elements of S are

comparable (i.e., for all x, y [ S, either x B y or y B x),

then S is called a chain (or a totally ordered set) [16]. Any

increasing chain in the set of valid configurations repre-

sented by a given feature model corresponds to a derivation

of the final configuration (the largest element in the chain)

from the initial configuration (the smallest element in the

chain). In particular, a chain starting from the empty con-

figuration ([, [, [) to some maximal element reflects the

sequence of decisions made in the whole process of

deriving an F-product. A decision can be basic (include a

single feature, exclude a single feature, or reduce the

A-domain of some attribute by removing a single value) or

a combination of basic decisions.

If S is an ordered set and x, y [ S, x is covered by y (or

y covers x) if x\ y and x B z\ y implies z = x (i.e., there

is no element z of S such that x\ z\ y) [16]. The case

where a valid configuration C1 is covered by another valid

configuration C2 (equivalently, C2 covers C1) indicates that

C2 is obtained from C1 by a basic decision.

Let S be an ordered set and Q ( S. For any x [ Q and

y [ S, if we have y [ Q whenever y B x, then Q is called a

down-set, if we have y [ Q whenever x B y, then Q is

called an up-set (i.e., down-sets are ‘‘closed under going

down,’’ and up-sets are ‘‘closed under going up’’) [16].

Hence, if C is a valid configuration, the smallest down-set

that includes C (i.e., C is the least upper bound of the

down-set) represents all possible ways of deriving C start-

ing from the empty configuration. Dually, the smallest up-

set that includes C (i.e., C is the greatest lower bound of the

up-set) represents all possible ways of deriving F-products

starting from C.

5.3 A closer look at P-products

There is variability in the syntactical sense in P-products,

since at least one of the A-domains in the product must

have two or more values that can be assigned to the

respective attribute. However, this variability may not

actually lead to a variety of products. For instance, consider

the feature model EM and the P-product ({F0, F1, F2},

{F0.a = 2, F1.b [ 2..4}). Although it is possible to derive

three F-products from this P-product, ({F0, F1, F2},

{F0.a = 2, F1.b = 2}) through ({F0, F1, F2}, {F0.a = 2,

F1.b = 4}), only the first is a valid F-product (the

remainder all fail Ctr2). Clearly, variability in such

P-products is pseudo-variability, and it does not result in a

variety of products; thus, it can give the user wrong indi-

cation. Hence, we introduce a subcategory for P-products

that do not have this deficiency.

Definition 14 (Proper P-product): Let M be a feature

model, P a P-product, and S the set of all F-products that

can be derived from P by assigning values to the attributes

from their respective A-domains. P is called a proper

P-product if and only if two or more of the F-products in

S are valid with respect to M. h

The definition given for proper P-products also enables a

semantic interpretation, since there is no proper P-product

that is invalid. This is not surprising since the category of

proper P-products is a subcategory of all valid P-products,

where the membership of this category is based on

semantics.

Although proper P-products fit the idea of product lines

in a better way, since they possess a real variability that

leads to a variety of products, this may still be far from

being an efficient representation. For instance, consider the

model given in Fig. 8.

Assume that there is a cross-tree constraint ‘‘F9 requires

F8.c = 200 or F8.c = 400’’ and a proper P-product

P14 = ({F7, F8, F9}, {F8.c [ 1..400}). When we remove

all the variability to achieve a set of fully specialized

products we obtain 400 different F-products P141 = ({F7,

F8, F9}, {F8.c = 1}) through P14400 = ({F7, F8, F9},

{F8.c = 400}). A quick analysis reveals that only two of

these F-products, namely P14200 and P14400, are valid,

while the remainder of the products are all semantically

invalid. A simple calculation shows that 99.5 % of the fully

specialized products that can be derived from P14 are

semantically invalid, which means the resources (e.g., time,

power, space.) used to derive these 398 F-products will be

wasted.

Recalling the feature model EM and assuming that there

is a P-product P15 = ({F0, F1, F2}, {F1.a [ 1..2, F2.b [
1..2}) there are four F-products that can be derived from

this P-product in total:

Fig. 8 An extended feature

model
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• P151 = ({F0, F1, F2}, {F1.a = 1, F2.b = 1})

• P152 = ({F0, F1, F2}, {F1.a = 1, F2.b = 2})

• P153 = ({F0, F1, F2}, {F1.a = 2, F2.b = 1})

• P154 = ({F0, F1, F2}, {F1.a = 2, F2.b = 2})

A simple analysis shows that these four F-products are

semantically valid since they satisfy all the constraints in

EM. Thus, any assignment to the attributes from their

respective A-domains in P15 derives a semantically valid

F-product. Such situations are desirable as no resource

expended on the derivation of fully specialized products

will be wasted. Moreover, if we know in advance that a

P-product has a valid F-product derivation rate of 100 %,

we can safely eliminate the cost of checking the validity of

the derived F-products. Hence, such P-products deserve a

classification of their own.

Definition 15 (C-product): Let M be a feature model, P a

proper P-product, and S the set of all F-products that can be

derived from P by assigning values to the attributes from

their respective A-domains. P is called a free choice

product if and only if all of the F-products in S are valid

with respect to M. h

Some of the C-products that can be derived from EM

are:

• ({F0, F1, F2}, {F1.a [ 1..2, F2.b [ 1..2})

• ({F0, F1, F2}, {F1.a [ 3..4, F2.b [ 3..4})

• ({F0, F1, F2, F3}, {F1.a [ 5..6, F2.b = 4})

Similar to proper P-products, the definition for C-pro-

ducts also enables a semantic interpretation, since there is

no C-product that is invalid.

C-products may be of great importance especially when

there are limited resources available to derive F-products.

For instance, handheld devices have limited capabilities in

terms of resources; thus, deploying C-products in such

devices may be desirable since they provide a number of

advantages. First, as they still possess variability, they

allow for a delay in binding the attribute values. Second,

they demand less computing power, since the validity of

every derived F-product is guaranteed and there is no need

to perform a check. Consequently, there is no need to store

the cross-tree constraints in the model and C-products will

demand less storage space than the other P-products.

6 Effects on analyses

6.1 Existing analyses

The extended definitions proposed in the previous sections

inevitably affect the analysis operations. For instance, the

analysis operation number of products is used to compute

the number of products that are represented by a feature

model. However, as there are a number of product types

(i.e., F-product, P-product, proper P-product, and C-prod-

uct) this definition becomes ambiguous, since it is not

possible to infer the product type that was intended.

In the following subsections we discuss some of the

well-known analysis operations on feature models, propose

a reformulation for some of them, and suggest a revised

understanding for others, considering the effects of the new

type of variability that has been introduced. However, we

do not attempt to cover all the operations that can be

revised; instead, our aim is to present selected illustrative

examples.

6.1.1 Valid partial configuration

This operation is used to discover whether a given con-

figuration is valid with respect to a given feature model.

The original version of this operation takes a feature model

and a partial configuration as the input and returns a value

that notifies whether the configuration is valid [6].

However, with the introduction of new classifications

for configurations this operation should be reformulated as

follows:

Valid partial configuration: This operation takes a fea-

ture modelM, a partial configuration C, and a configuration

type T (i.e., F-configuration or P-configuration) as inputs,

and returns a value which confirms whether C is a valid

partial configuration of type T with respect to M.

The valid product analysis operation [6] can also be

reformulated in a similar manner.

6.1.2 All products

This operation is used to compute all the products repre-

sented by a given feature model. The original version of

this operation requires a feature model as input, and out-

puts all products represented by the model [6]. However,

since we have classified products into different categories,

the type of products to be outputted must be specified as

well. Hence, the all products analysis operation is redefined

as follows:

All Products: This operation takes a feature model

M and a product type T as inputs, and returns all the pro-

ducts of type T that are represented by M.

The number of products analysis operation [6] can also

be redefined in a similar manner.

6.1.3 Filter

This operation is used to compute the set of valid products

that include a given configuration. The original version of

this operation requires a feature model and a configuration
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as inputs, and outputs all products that are represented by

the model including the input configuration [6]. We use the

ordering relation presented in Sect. 5.2 to reformulate this

operation.

Filter: This operation takes a feature model M, a con-

figuration C, and a product type T as inputs, and returns all

the products P1, …, Pn, which are of type T, represented by

M, and C B P1, …, C B Pn.

Note that, if the input product type is F-product, then the

filter operation is equivalent to finding all the maximal

elements in the smallest up-set that includes C.

6.1.4 Multi-step configuration

This operation is used to solve a multi-step configuration

problem, which is known as producing a specialization

path from one configuration to another [6]. As discussed in

Sect. 5.2, for a given feature model the set of all valid

configurations represented by the model is a meet semi-

lattice. Thus, this operation is actually finding a chain from

the initial, to the final configuration, as depicted in Fig. 9.

Multi-step configuration: This operation takes a feature

modelM, an initial configuration Cinitial, a desired final con-

figurationCfinal, a number n, a global constraintG that cannot

be violated, and a function determining the cost to transition

from one configuration to another as inputs, and returns an

ordered list, L, of valid configurations with respect to M as

the output, where L = (Ci_1,…, Ci_n), such that: (i) CinitialB

Ci_1 and Ci_n B Cfinal (ii) elements of L form an increasing

chain, (iii) L has exactly n elements, (iv) no transition in the

chain violates the global constraint G.

6.1.5 Core features

This operation is used to find the set of features that are

included in all the products represented by a feature model

[6]. Before discussing how this analysis operation is

affected by the extended product definition, we will con-

sider the example given in Fig. 10.

The feature model given in Fig. 10 represents six

F-products:

• ({F10, F11}, {F11.a = 1}) through ({F10, F11},

{F11.a = 3})

• ({F10, F11, F12}, {F11.a = 1}) through ({F10, F11,

F12}, {F11.a = 3})

It also represents eight P-products:

• ({F10, F11}, {F11.a [ {1, 2}}),…, ({F10, F11}, {F11.a

[ {1, 2, 3}})

• ({F10, F11, F12}, {F11.a [ {1, 2}}), …, ({F10, F11,

F12}, {F11.a [ {1, 2, 3}})

The cases for the features F10 and F12 are obvious (i.e.,

F10 is a core feature and F12 is not). However, the case for

feature F11 is more interesting, since although it is inclu-

ded in all of the products the A-domains of its attribute are

different in some of the products. Consequently, the spe-

cialization of the feature F11 can be different in different

products. However, regardless of its specialization, the

feature will continue to be included in those products.

Thus, we conclude that F11 is a core feature.

The extension we have proposed to the product defini-

tion does not affect the inclusion state of a feature in a

product; it only provides extra information regarding the

attributes. Hence, the core features analysis operation

remains unaffected. Using a similar inference it is easy to

show that the variant features analysis operation [6] also

remains unaffected.

6.1.6 Commonality

This operation is used to compute a measure of how

common a given configuration is among the products

represented by a given feature model. The original version

of this operation requires a feature model and a configu-

ration as inputs and returns the percentage of products

including the input configuration, as computed using For-

mula 1 [6].

Commonality M;Cð Þ ¼ jfilter M;Cð Þj
Number of ProductsðMÞ ð1Þ

Fig. 9 A chain from the initial configuration to the final configuration

Fig. 10 An extended feature

model
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As discussed in Sects. 6.1.2 and 6.1.3, number of pro-

ducts and filter analysis operations require a product type

as input, and the outcome of these operations depends on

this input. Thus, the commonality analysis operation is

redefined as follows:

Commonality: This operation takes a feature model M, a

configuration C, and a product type T as input, and returns

the percentage of products including the input configura-

tion, which is computed using Formula 2.

Commonality M;C; Tð Þ ¼ jfilter M;C; Tð Þj
Number of Products(M; TÞ

ð2Þ

If the number of products is equal to 0 (e.g., when

considering P-products and no feature having an attribute)

the operation must automatically return 0 to avoid division

by zero.

6.1.7 Variability factor

This operation computes the ratio between the actual

number of products and the potential number of products

represented by a given feature model. The original version

of this operation requires a feature model as the input and

returns the variability factor computed by Formula 3 [6].

Variability FactorðMÞ ¼ Number of ProductsðMÞ
2n

ð3Þ

In particular, 2n, where n is the number of features to be

considered, is the number of potential products represented

by a feature model assuming that any combination of

features is allowed. The formula 2n follows the assumption

that a feature has two possible states with respect to a

product: it is either included in the product or not. How-

ever, this assumption does not hold if a feature has an

attribute that has two or more values in its specified

domain. Hence, the computation for the number of poten-

tial products and the variability factor analysis operation

must be reformulated.

Variability Factor: This operation takes a feature

model M and a product type T as the input, and returns

the ratio between the actual and potential number of

products represented by M, which is computed with

Formula 4.

The appropriate formulas for the F-product and P-

product types are given in Formula 5 and Formula 6,

respectively. In these formulas n represents the total

number of features, m the number of features that have at

least one attribute with a domain whose cardinality is

greater than 1 such that 0 B m B n, Di.j the domain of the

jth attribute of the ith feature and |D| the cardinality of

domain D.

Variability FactorðM; TÞ ¼ Number of ProductsðM; TÞ
Appropriate formula for T

ð4Þ

2n�m � D1:1j j � . . .� D1:p

�
�

�
�þ 1

� �

� . . .

� Dm:1j j � . . .� Dm:q

�
�

�
�þ 1

� �

ð5Þ

Since we assume that any A-domain specification for the

attributes is possible, Formula 6 can also be used to cal-

culate the potential number of proper P-products and

C-products. If the number of potential products is equal to

0 (e.g., when considering P-products and no feature having

an attribute), the operation must automatically return 0 to

avoid division by zero.

6.2 New analyses

The new variability type and the extended definitions of

configuration and product also open the way to new analysis

needs. In this section we provide examples of such analyses.

6.2.1 Dead attribute values

Consider the extremely simplified extended feature model

for a smart phone given in Fig. 11.

Fig. 11 An extremely simplified feature model for a smart phone

family
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Assume that there is a cross-tree relation E-Mail Soft-

ware requires OS.version C 6 in this model. As E-Mail

Software is a core feature, the attribute OS.version can

never obtain a value from 1..5 when all the variability (in

terms of features and attributes) in the model is removed.

In this case values 1 through 5 are called dead attribute

values. The model as it is gives the user the impression that

early versions of the operating system (i.e., versions 1

through 5 in this case) can also be installed in this device.

However, as the quick analysis reveals, no valid F-product

that includes an early version can exist. Thus, such cases

are undesirable since they give the user incorrect ideas

about the domains of the attributes.

To find the dead attribute values in a feature model we

introduce a new analysis operation, dead attribute values,

as follows.

Dead Attribute Values: This operation takes a feature

model as the input, and returns the set of (attribute, set of

dead values) pairs in the given feature model.

Dead attribute values cannot exist in an A-domain of an

attribute in any valid F-product (and consequently cannot

exist in any C-product), but may exist in some A-domains

of the attributes in some P-products and proper P-products.

However, eventually these values will have to be elimi-

nated when removing variability involving attributes.

6.2.2 Generating the corresponding F-product set

Sets of products are often encountered in the feature model

representations and analyses. For instance, a feature model

can also be expressed as the set of all products that can be

derived from the model. Outputs of a number of analysis

operations such as all products and filter are sets of pro-

ducts. Since there are four product types, consequently,

there will be product sets including different types of

products. In this section we will present a correspondence

relation between product sets.

Definition 16 (Corresponding F-set): Let M be a feature

model, and S a set of products derived from M. Then the

corresponding F-set for S with respect to M, which will be

denoted as F-set(S, M), is the set of all valid F-products

(with respect to M) that can be derived from the products

included in S (i.e., the set of all maximal elements in the

smallest up-set that includes all the elements of S). h

Example Consider the feature model EM and the product

set S = {P16}, where P16 = ({F0, F1, F2}, {F1.a [ 1..3,

F2.b [ 1..3}). Then the corresponding F-set is F-set(S,

EM) = {P161, P162, P163, P164, P165}, where:

• P161 = ({F0, F1, F2}, {F1.a = 1, F2.b = 1})

• P162 = ({F0, F1, F2}, {F1.a = 1, F2.b = 2})

• P163 = ({F0, F1, F2}, {F1.a = 2, F2.b = 1})

• P164 = ({F0, F1, F2}, {F1.a = 2, F2.b = 2})

• P165 = ({F0, F1, F2}, {F1.a = 3, F2.b = 3}) h

All product sets, except for those that consist of only

F-products, will include products that still have some

unresolved variability involving attributes; hence, it is

possible to further specialize them. Thus, we introduce a

new analysis operation to undertake this task.

Generating the Corresponding F-Set: This operation

takes a feature model M and a set of products S as the input

and outputs the corresponding F-set for S with respect to

M (i.e., F-set(S, M)).

6.2.3 Generating a minimum set

Recall that, although P-products still have unresolved

variability involving attributes, this variability may not

lead to an actual variety of valid products. C-products, on

the other hand, offer true variability and an efficient way of

representing a set of products by a single product, since all

the F-products that can be derived from a C-product will be

valid. Thus, if a product set includes only C-products and

valid F-products, then it will be ultimately prolific, since

any F-product obtained from the set will be valid. There-

fore, we start by introducing such product sets.

Definition 17 (Prolific product set): Let M be a feature

model, and S a set of products. S is called prolific if (i)

S includes only C-products and F-products, (ii) all products

in S are valid with respect to M. h

Prolific sets enable efficient derivation of F-products,

since we can arbitrarily assign values to the attributes from

their A-domains in order to derive fully specialized pro-

ducts without being concerned about violating a constraint

in the feature model. However, still leading to the deriva-

tion of the same set of F-products, some prolific sets may

offer a more efficient representation than other sets. For

instance, consider the following set of products, S, derived

from EM:

• ({F0, F1, F2}, {F1.a = 1, F2.b = 1})

• ({F0, F1, F2}, {F1.a = 1, F2.b = 2})

• ({F0, F1, F2}, {F1.a = 2, F2.b = 1})

• ({F0, F1, F2}, {F1.a = 2, F2.b = 2})

A prolific set, S1, where F-set(S1, M) = F-set(S, M) can

contain the following three products:

• ({C, F1, F2}, {F1.a = 1, F2.b [ 1..2})

• ({C, F1, F2}, {F1.a [ 1..2, F2.b = 1})

• ({C, F1, F2}, {F1.a = 2, F2.b [ 1..2})

Another prolific set, S2, where F-set(S2, M) = F-set(S,

M) can contain only the following product:

• ({C, F1, F2}, {F1.a [ 1..2, F2.b [ 1..2})
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It is also possible to find other prolific sets whose cor-

responding F-set will be equal to the F-set(S, M). Although

the corresponding F-sets of S1 and S2 are both equal to the

F-set(S, M), S2 offers a more efficient representation since

S2 contains only a single product, whereas S1 contains

three products. Moreover, it is not possible to find a prolific

set Sx such that F-set(Sx, M) = F-set(S, M) and |Sx|\ |S2|.

Thus, S2 has a special property among the other prolific

sets.

Definition 18 (A minimum prolific set): Let S be a set of

products, M a feature model, and {S1, …, Sn} the set of all

prolific sets such that F-set(Si, M) = F-set(S, M) for i = 1,

…, n. Then, Sk is called a minimum prolific set corre-

sponding to S with respect to M if |Sk| B |Si| where

1 B k B n. h

Using a minimum prolific set would be desirable to

represent a set of products, since it provides a smaller set,

which includes fewer products, but capable of representing

the same F-product set. A minimum set can be used to

discover individual C-products that represent a wider set of

F-products compared with similar C-products (i.e., the

C-products that include the same set of features). Thus, to

compute a minimum prolific set corresponding to a given

set of products and a feature model we introduce a new

analysis operation, generating a minimum prolific set, as

follows.

Generating a Minimum Prolific Set: This operation

takes a feature model M and a product set S as input and

returns a minimum prolific set corresponding to S with

respect to M.

7 Effects in practice

The feature model we built for the KaVIS project includes

many features that represent off-the-shelf components that

are readily available in the market. For instance, the RF

Transceiver feature is further decomposed into actual

components as depicted in Fig. 12.

The RF Transceiver component is used for radio com-

munication between the mobile unit and the beacon nodes

in an industrial, scientific and medical (ISM) [25] fre-

quency band. There are various ISM frequency bands

available in different regions as specified by the Interna-

tional Telecommunications Union. For instance, Turkey is

located in Region-1; thus, frequency ranges such as

40.66–40.70 MHz and 2.4–2.5 GHz are available for use in

Turkey.

First, we utilized the filter operation in order to find the

products that can be marketed in specific regions. Note

that, the value of the attribute frequency, which belongs to

the feature RF Transceiver, determines whether a product

can be marketed in a region. In order to find the products

that qualify, regarding the ISM regulations, to be marketed

in Region-2, we applied the filter operation on the extended

configuration ({RF Transceiver}, {}, {RF Transceiver.fre-

quency [ {13.553–13.567 MHz, 26.957–27.283 MHz, …,

5.725–5.875 GHz, 24–24.25 GHz}). Thus, we clearly

needed the revised version of the filter operation for this

task.

Next, we decided to focus on the products that can be

marketed locally in Turkey. As discussed above, this goal

can also be achieved by applying the filter operation.

However, we chose to modify our model to make it spe-

cifically tailored for Region-1. Therefore, we added the

constraint ‘‘Mobile Unit requires an RF Transceiver that is

capable of operating in an ISM band in Turkey (i.e.,

Region-1).’’ Then, we applied the dead attribute values

operation. This operation eliminated the values, which

cannot appear in any of the valid F-products, from the

domains of the attributes (e.g., values that do not belong to

Region-1 ISM band frequencies from the domains of the

frequency attributes of the RF Transceiver components).

Hence, we obtained a simplified and more realistic model.

We also sought and produced C-products that serve for

different purposes. Since C-products still possess variabil-

ity involving attributes where values for the attributes can

freely be selected from their A-domains (i.e., all possible

assignments will result in valid F-products) they facilitate

the delaying of the binding on certain properties. For

instance, we sought C-products that have a fixed hardware

structure, but can operate in different regions by simply

configuring the RF Transceiver operation frequency.

Another example was that we sought products where the

parameters of the installed ranging algorithms (e.g., the

maximum number of beacons that will be taken into

account in the computations, the size of the measurement

pool that will be used in the computations) can be con-

figured before deployment in accordance with the capa-

bilities of the micro controller unit (the clock speed, the

Fig. 12 Decomposition of the feature RF Transceiver
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size of the flash and RAM memories, etc.) to obtain better

performance for different considerations from the selected

hardware.

After obtaining various C-products we generated the

corresponding F-product sets to check the product diversity

these C-products offer by simply configuring some

parameters before the deployment. We also generated

corresponding minimum prolific sets for different F-prod-

uct sets in order to obtain C-products that lead to a greater

variety of F-products compared with similar C-products.

8 Related work

As the success of a product family is highly dependent on

effective variability handling [8], variability modeling and

management is an essential activity in SPLs. There are

several variability modeling and management approaches

reported in the literature such as feature modeling (e.g.,

[26]), decision modeling (e.g., [46]), using UML and its

extensions (e.g., [51]), using domain ontologies (e.g., [1]),

using use cases (e.g., [22]), and using the orthogonal var-

iability model (e.g., [40]). Within this wide variety of

techniques, feature modeling is the most popular choice

[11]. The variability modeling and management method we

discussed in this study are feature modeling. We refer the

reader to [45] and [11] for detailed literature reviews and

classifications of various variability modeling and man-

agement techniques used in SPLs.

The existing approaches that use feature models manage

variability at the level of features (i.e., features are the units

of variability in feature models) [14], whereas our work

extends the notion of variability in feature models to also

include the feature attributes as variability units. The

existing approaches model variability in feature models

through decomposition and cross-tree relations. The

decomposition relations include the mandatory, optional,

and alternative relations, as introduced in [26], the or

relation, as introduced in [21], the group cardinality rela-

tion, as proposed in [41] and [15], and the feature cardi-

nality relation, as proposed in [15]. The cross-tree relations

include the basic requires and excludes constraints, as

introduced in [26], formulas constructed by applying

propositional connectives on arbitrary features (e.g., Fea-

ture X requires Feature Y or Feature Z), as described in

[3], and complex cross-tree relations involving both fea-

tures and feature attributes, as described in [31]. Our work

does not introduce a new relation to enhance the expres-

siveness of the feature models; instead, it focuses on the

effects of the variability modeling relations, primarily the

complex cross-tree relations involving both features and

feature attributes, used in feature models. The variability

modeling relations involving only features and the related

analysis operations are a well-studied subject in the liter-

ature. However, to the best of our knowledge, this article is

the first to elaborate variability modeling in feature models

at the level of feature attributes, hence extending the units

of variability to include feature attributes.

There are various classifications for features reported in

the literature. For instance, Kang et al. [27] consider dif-

ferent levels of abstraction and classify features into four

categories according to the types of information they rep-

resent: capability features, operating environment features,

domain technology features, and implementation technique

features. Later, Lee et al. [33] discuss the different view-

points that exist in the problem and solution spaces and

refine this classification as goal features, usage context

features, quality features, capability features, operating

environment features, and design features. Loesch et al.

[34] present a classification for features according to their

usage in real products and describe the following four

categories for the variable features: always used, never

used, only used mutually exclusively, and only used in

pairs. Botterweck et al. [9] propose to leverage visualiza-

tion techniques in order to support fundamental develop-

ment tasks and classify some of the features as cost-driving

features (i.e., features with a high relative contribution to

the products’ total development costs) and high-risk fea-

tures (i.e., features that represent critical capabilities of the

product line). In their work, high-risk features are further

classified into four subcategories as follows: critical inno-

vative features, critical routine features, critical third party

features, and critical systemic features. In one of their

studies, Lee et al. [32] classify features into feature groups

based on an analysis regarding binding information. They

adopt a two-dimensional viewpoint, with the first dimen-

sion being the product lifecycle and the second being the

feature binding state, and in which categories are described

to present different types of features such as features that

will be included at the product development stage, features

that will become available at the installation phase, and so

on.

The feature classification we present in this article is

solely based on the new variability type (i.e., variability

involving attributes). Therefore, it is not an alternative or

complement to any of the aforementioned classifications;

rather, it is a classification that is to be used in parallel. For

instance, a feature that belongs to the category capability

features as described in [33] will also be an F-feature or

P-feature. Furthermore, a critical innovative feature as

described in [34] will also be an F-feature or P-feature.

Moreover, we do not categorize the features in a feature

model until they appear in a configuration or a product as

an included feature. Hence, the classification we present for

features is dynamic in the sense that it may vary for a

feature with respect to the configurations or products in
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which it is included. For instance, a feature may be clas-

sified as an F-feature in one configuration and as a P-fea-

ture in another.

Feature classifications also exist that are introduced in

accordance to the characteristics of the domain of the product

family. For instance, Lopez-Herrejon et al. [35] define a

standard problem from the domain of classical graph appli-

cations in computer science for evaluating product-line

methodologies and propose a classification for the features

extracted from this domain. Later,Wang et al. [49] explicitly

list this classification as algorithm, graph type, and search

features, and build a feature model using them in order to test

their approach. Clearly, since our classification is indepen-

dent of domain, it can coexist with such domain-specific

classifications. For instance, a graph-type feature will also be

an F-feature or P-feature, depending on the configuration or

product in which it is included.

The classifications for products reported in the literature

are essentially based on domain characteristics. For

instance, Hartmann et al. [23] give product classifications

such as DVDs, MP3 players, and hard disk recorders, or

budget products, mid-range products, and high-end pro-

ducts where the motivations for these categorizations

originate from the domain characteristics. Similarly,

Dumitru et al. [18] classify products into types such as

antivirus software, browsers, and file managers while rec-

ommending features for a product family in the computer

software domain. Our classification for products is solely

built on the requirements that the new variability type

demands meaning that it is not domain specific. Therefore,

it can coexist with such domain-specific product classifi-

cations. For instance, a mid-range product as described in

[23] will also be an F-product or P-product (if so can also

be a proper P-product and/or C-product).

Using lattices in support of feature modeling is not new.

For instance, Ryssel et al. [42] make use of a lattice to

build a feature model from an incidence matrix that

describes the common and different artifacts of variants.

Niu et al. [38] use a lattice ordering to characterize vari-

ability degrees and evolutionary properties in order to

integrate different viewpoints of a product line. However,

our purpose in using partial orders and lattices is com-

pletely different since we use them primarily to support

product derivation. A recent work by Höfner et al. [24]

presents a semi-ring of product families to express vari-

abilities in the form of features. They too define a partial

order, the natural order associated with the semi-ring. The

natural order is defined on product families (i.e., sets of

products), whereas our partial order is defined on config-

urations. There is a connection so that if two configurations

are related in our order, say C1 B C2, then we have

p(C2) B p(C1) in the natural order (in fact,

p(C2) ( p(C1)), where p(C1) is the set of maximal

elements in the smallest up-set that includes C1, (i.e., the

set of all products derivable from C1), and similarly for C2.

In line with most publications in the field, they consider

features as variability units, whereas we consider both

features and their attributes and extend our ordering rela-

tion accordingly. We establish the fact that the set of all

valid configurations represented by a feature model, whe-

ther basic or extended, is a meet semilattice.

Kang et al. [26] were the first to propose valid partial

configuration and valid product analysis operations in a work

in which they introduced feature models. The first references

to all products and number of products analysis operations

exist in Mannion [36] and van Deursen et al. [17]. The first

references to filter, variability factor, and commonality ana-

lysis operations were in the work of Benavides et al. [4, 5, 7],

and Fernandez-Amoros et al. [19] were the first to suggest the

homogeneity analysis operation.Themulti-step configuration

analysis operation is defined in [52]. The core features and

variant features analysis operations were first discussed in

[48].We refer the reader to [6] for a detailed literature review

on the analysis operations on feature models. However, all of

these analysis operations consider only the features as vari-

ability units. For instance, the valid partial configuration

analysis accepts the configurations specified by only the set of

features to be included and excluded. Our study includes

feature attributes as variability units in addition to features

and revisits these analysis operations to discuss the effects of

the new variability type, variability involving attributes. We

provide slightmodifications to some operations (e.g., number

of products), a revised understanding of other operations

(e.g., filter), maintain some operations (e.g., core features),

and reformulate others (e.g., variability factor) while keeping

the purpose and essence of the operations unchanged. We

must also note that the new analysis operation dead attribute

values that we introduce was inspired from the analysis

operation dead features, first introduced by Kang et al. in

[26], and finds the features that are included in none of the

valid products represented by a feature model.

The sequence of development, starting with the seminal

work of Czarnecki et al. [13] and Benavides et al. [7],

continuing with Karataş et al. [29, 31] and culminating in

the present study, has established feature attributes as first-

class entities in variability modeling. In the same way as

features, feature attributes can also be treated as units of

variability in the modeling and analysis of variability.

9 Discussion and challenges

9.1 An alternative approach?

Recall that in this work, we allow only finite sets to be the

domains of attributes. Therefore, theoretically, it can be

Requirements Eng (2016) 21:185–208 203
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possible to transform the extended feature models into

equivalent basic feature models by enumerating the values

in the attribute domains and introducing a new child feature

for each enumeration. Such an approach can facilitate the

use of the existing theory and tools on the extended feature

models that we consider. However, theoretical possibility

does not necessarily lead to efficient and practical solu-

tions. For instance, consider the simple extended feature

model given in Fig. 13.

A straightforward way to adopt the strategy mentioned

above is to introduce 10 new features for F14 and 100 new

features for F15, one for each value in the domains of these

features’ attributes, and connect these new features to their

parents using the alternative decomposition relation.

Therefore, the resulting transformed model will contain a

total of 113 features. Even this simple example indicates

that such an approach can introduce massive complexity to

the model. Moreover, the complexity introduced will not

be limited to the new features.

Assume that the model in Fig. 13 has a cross-tree con-

straint ‘‘If F15.b B 80, then F15 requires F14.a[ 8.’’ This

constraint should also be adopted in the transformation by

introducing new constraints. Thus, 8 new basic constraints

must be introduced for each enumeration of F15 for the

values 1 through 80 such as ‘‘F15_1 excludes F14_1,’’…,

‘‘F15_1 excludes F14_8,’’…, ‘‘F15_80 excludes F14_1,’’…,

‘‘F15_80 excludes F14_8.’’ In this case, 640 basic cross-tree

constraints would be added to the transformed model for a

single cross-tree constraint involving attributes, and it

could be even worse if the numbers in the constraint were

different.

In the above case, an extremely simple extended feature

model is analyzed in which there are only 3 features that

only have single attributes. It is obvious that the situation

can become much more complicated when there are more

features, and some features have multiple attributes. Hence,

such a straightforward approach would not be feasible in

practice.

A study by Karataş et al. [30] attempts to eliminate

attributes from cross-tree constraints to transform extended

feature models into equivalent basic feature models in

order to benefit from existing tools. This work uses a more

efficient strategy than the straightforward approach

discussed above, as it does not introduce a new feature for

every value in the attributes’ domains, but groups these

values according to the cross-tree constraints and intro-

duces a single feature for each group. Even in this case,

assuming there are n cross-tree constraints involving

attributes and k attributes that appear in cross-tree con-

straints, the growth in the number of features will be O(nk),

which can be very high. Moreover, this attempt assumes

that there are harsh restrictions on the structure of the

cross-tree constraints (e.g., in the constraints that have the

form ‘‘Feature requires Expression’’ Expression is not

allowed to include attributes of two different features),

which significantly limits the expressivity of the complex

cross-tree constraints that can be used.

Apart from the complexities that can be caused by the

number of new features to be introduced, other issues that

would cause problems in a transformation attempt include

the transformation of global constraints and complex cross-

tree constraints. The study presented in this article allows

extended feature models to include global constraints as

described in [28], and a rich set of complex cross-tree

constraints as described in [31]. Global constraints can

provide significant efficiency in certain analysis operations

[28]. However, it is not clear how global constraints can be

expressed without using attributes. Similarly, it will be

quite cumbersome to express complicated cross-tree con-

straints, such as ‘‘If X.a\ 10 and (Y.b\ 20 or Z.c = 30)

then W requires S.d = 40 and T.e\ 50 or S.f ? Q.g\P.h

– R.i,’’ which are allowed in this study, in terms of basic

cross-tree constraints.

Assuming a method is found to overcome all the issues

discussed in this section in an efficient way, the practicality

of such a method would still be questionable. As the model

will include artificial features and constraints contrived for

the purpose of transformation, which are not evident in the

actual requirements, the model would look unnatural.

9.2 Challenges ahead

The list of existing analysis operations reformulated in this

article is by no means exhaustive in terms of the known

analysis operations to be revised. For instance, the analysis

operation degree of orthogonality must be reformulated as

the outcome of this operation is dependent on the type of

products to be considered. This operation can be refor-

mulated using the ideas presented for the reformulation of

the commonality analysis operation. However, it is not easy

to foresee how analysis operations such as explanations

and anomalies detection will be affected from the intro-

duced extended concepts, and thus, there is a need for

rigorous dedicated studies. Thus, the analysis operations

revised in this article are examples intending to provide

insight for some of the well-known, frequently used

Fig. 13 A simple extended

feature model
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operations. The examination of the remainder of the

existing analysis operations that have been reported is

subject to further research.

The new analysis operations introduced in this article

can be useful in order to take full advantage of extended

feature models. However, more analysis operations can be

introduced, for instance, an analysis operation to find the

conditionally dead attribute values can be defined in a

similar fashion to the definition of the dead attribute

values analysis operation. The extra constraint represen-

tativeness (ECR) analysis operation, which is defined for

features, can be adopted to compute the ECR for attri-

butes (ECR-A). Hence, it is possible to define new ana-

lysis operations as required using the definitions in this

article as a guide.

Feature models for realistic product families can easily

grow to include hundreds of features, attributes and cross-

tree constraints. Manually applying the concepts presented

in this article to real-life problems can be very time-con-

suming and error prone; hence, automated support is highly

desirable. There are many popular commercial and aca-

demic tools available for feature model management and

analyses. Adopting the ideas proposed in this article to the

existing tools and developing new tools with such capa-

bilities are subject to further study.

As Capilla et al. [10] suggest, dynamic SPLs must

provide late binding times. C-products would be very

useful in this context to delay the binding of variability

involving attributes, especially if the resources available to

derive F-products are limited. If there is a C-product, then

there is no need to check the validity of an F-product

derived from the C-product, since every derived F-product

will be valid; thus, the processing power requirements to

check the validity can be eliminated together with the

storage space needed to store the constraints. However, the

degree of variability provided by C-products is limited to

variability involving attributes. Configurations, on the

other hand, can possess more variability, i.e., variability

involving features in addition to variability involving

attributes. The introduction of a new partial configuration

type, which will guarantee that all products derived from

this type of configurations will be valid, would prove to be

very useful. For instance, such configurations can delay not

only the binding of attribute values, but also binding of the

features that are not specified in the configuration. Clearly,

this topic needs further research and a rigorous examina-

tion of the requirements that such configurations should

meet and the ramifications they will bring.

It may be desirable to employ a post-processing step on

the results provided by some of the analysis operations in

order to produce refined and, consequently, more efficient

outcomes. For instance, assume that the model given in

Fig. 14 has a single cross-tree constraint:

• Controller requires VGA.slot\ Sound.slot and

Sound.slot\Ethernet.slot and Ethernet.slot\Wi-

Fi.slot and Wi-Fi.slot\ TV.slot

This model represents only a single F-product, which is

({PCI, VGA, Sound, Ethernet, Wi-Fi, TV, Controller},

{VGA.slot = 1, Sound.slot = 2, Ethernet.slot = 3, Wi-

Fi.slot = 4, TV.slot = 5}), and no proper P-products

(consequently no C-products). However, when P-products

are considered, the result will be enormous: 1,048,575

P-products. More interesting at this point is that although

this number is very high, all of the resulting P-products will

be equivalent, since the only F-product represented by the

model will be derivable from each one of these P-products.

Thus, if only one of the semantically equivalent products is

to be output, then the result would be much more concise,

since only one P-product would exist in the outcome.

This example suggests that the outcomes of some of the

analysis operations such as all products, number of pro-

ducts, and filter can be processed to eliminate all but one of

the semantically equivalent products. Considering that two

F-products (or two C-products) are semantically equivalent

only if these two products are the same, such post-pro-

cessing will not have any effect on the sets of F-products or

C-products. For P-products and proper P-products, on the

other hand, it is necessary to investigate the types of ben-

efits to be gained and the types of complications that can

arise from employing such post-processing steps.

10 Conclusions

This article has elaborated the role of feature attributes in

the modeling and analysis of commonality and variability.

The existing semantic groundwork has been extended to

enable the full use of extended feature models for the

analysis of variability and for product derivation. This

extension is predicated upon treating feature attributes as

first-class entities, that is, on the same footing as features.

We discussed the effects of the inclusion of feature

attributes in cross-tree constraints on feature models.

Including attributes in complex cross-tree constraints

increases the expressive power of the constraints, hence

allows the modeling of complex requirements that can

Fig. 14 A simple extended feature model
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originate in realistic scenarios. As existing configuration and

product definitions do not include information regarding the

values that can be assigned to the attributes of the included

features, they are not sufficiently powerful to deal with situ-

ations that can arise due to an extended type of variability,

variability involving attributes. Therefore, we proposed

extending the existing configuration and product definitions

to overcome this deficiency. It is worth noting that the

extendeddefinitions include the existing definitions as special

cases (i.e., they assume that the specified domains of the

attributes in the model serve as their A-domains); thus, we

achieve full backward compatibility.As the expressive power

of configurations and products increase with these exten-

sions, the extended definitions would promote the wider use

of extended feature models.

Next,we elaboratedon the ramifications of these extensions

and presented categorizations to identify the configurations

and products with similar properties. In order to provide a

semantic foundation for our proposal, we examined the

validity of different types of configurations and products based

on constraint satisfaction. We also showed that there exists an

ordering relation on the valid configurations (including pro-

ducts asmaximal elements), and the resulting partially ordered

set is indeed a meet semilattice. Since the theory of partial

orders and lattices is amaturemathematical subject,webelieve

that this connection will prove to be valuable for the formal

foundations of variability management.

We also presented a number of examples showing how

the existing analysis operations must be revised in order to

meet the new conditions that arise from this study. The list

of examples presented is, of course, not exhaustive; how-

ever, we hope that these examples, along with the new

analysis operations proposed, will serve as a start-up guide

for those that will conduct further research on this subject.

Finally, we shared some experiences gained from an

ongoing industrial R&D project that employs an extended

feature model. Although the experiences we present in this

study are at an introductory level, we believe that they will

provide an insight into the ideas in action for practitioners

in the field. As researchers and practitioners adopt the ideas

presented in this study, a collective know-how on the

effects of these ideas in action will emerge.

Appendix 1

Proof of Proposition 1 We first start by observing that the

subset relation is also reflexive (i.e., X ( X), antisym-

metric (i.e., X ( Y and Y ( X imply X = Y), and transi-

tive (i.e., X ( Y and Y ( Z imply X ( Z), where X, Y,

and Z are sets. We define the configuration ordering using

the subset relation between the sets of included features

and the sets of excluded features of two valid

configurations; thus, it quickly follows that the configura-

tion ordering relation is a partial order, as follows.

Let C1 = (I1, E1), C2 = (I2, E2) and C3 = (I3, E3) be

three valid configurations with respect to M. The config-

uration ordering relation is

• (reflexive) C1 B C1, since I1 ( I1 and E1 ( E1.

• (antisymmetric) C1 B C2 and C2 B C1 imply C1 = C2,

since I1 ( I2 and I2 ( I1 imply I1 = I2, and E1 ( E2

and E2 ( E1 imply E1 = E2

• (transitive) C1 B C2 and C2 B C3 imply C1 B C3, since

I1 ( I2 and I2 ( I3 imply I1 ( I3, and E1 ( E2 and

E2 ( E3 imply E1 ( E3 h

Proof of Proposition 2 We first start by observing that

Cinf B C1 (since I1 \ I2 ( I1 and E1 \ E2 ( E1) and

Cinf B C2 (since I1 \ I2 ( I2 and E1 \ E2 ( E2). Thus,

Cinf is a lower bound of {C1, C2}.

Then, we show that Cinf is the greatest lower bound of

{C1, C2}. Assume that there exists another configuration

C = (I, E), where C = Cinf, such that C is a lower bound

of {C1, C2} and Cinf B C. Due to the assumption C = Cinf,

at least one of the following two conditions must be true:

(i) I = I1 \ I2, (ii) E = E1 \ E2.

We will first examine (i). Since we have assumed that

Cinf B C, then, due to the definition of the configuration

ordering relation, it must be the case that I1 \ I2 ( I. If (i)

is true, then there must be at least one feature f such that f is

a member of I, but not I1 \ I2. f is not a member of I1 \ I2 if

and only if f 62 I1 or f 62 I2. However, since we assumed that

C is a lower bound of {C1, C2}, it must be the case that

C B C1 and C B C2. If C B C1, then I ( I1; thus, every

member of I, including f, must also be a member of I1;

hence, f 62 I1 cannot be true. For similar reasons, f 62 I2
cannot also be true. Therefore, it is not possible to find such

an f. Consequently, (i) cannot be true.

Similarly, it is easy to show that (ii) cannot be true as

well. Thus, our assumption on the existence of such a C

fails. Therefore, we conclude that Cinf = (I1 \ I2, E1 \ E2)

is the infimum of {C1, C2} (i.e., Cinf = C1 ^ C2). h

Proof of Proposition 3 Let the set of all valid configu-

rations represented by M be S. Since M is not void, it

represents at least one valid product; thus, S will be non-

empty. It follows from Proposition 1 that S is equipped

with the partial order relation B ; thus, it is a partially

ordered set. It follows from Proposition 2 that for any two

valid configurations C1 = (I1, E1) and C2 = (I2, E2) such

that C1, C2 [ S, C1 ^ C2 exists and is equal to (I1 \ I2, E1 \
E2). Therefore, S is a meet semilattice. h

Proof of Proposition 4 We first start by observing

that Cinf B C1 (since I1 \ I2 ( I1, E1 \ E2 ( E1, and
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A1-1 ( A1-1 [ A2-1, …, A1-n ( A1-n [ A2-n). Similarly,

Cinf B C2 is also true. Thus, Cinf is a lower bound of

{C1, C2}.

Then, we show that Cinf is the greatest lower bound of

{C1, C2}. Assume that there exists another configuration

C = (I, E, D), where C = Cinf, such that C is a lower

bound of {C1, C2} and Cinf B C. Due to the assumption

C = Cinf, at least one of the following three conditions

must be true: (i) I = I1 \ I2, (ii) E = E1 \ E2, (iii)

D = Dinf. The proofs that show (i) and (ii) cannot be true

can be directly borrowed from the proof of Proposition 2.

Therefore, we will focus on (iii).

Let D = {a1 [ A1, …, an [ An}. Since we have assumed

that Cinf B C, then, due to the definition of the extended

configuration ordering relation, it must be the case that

A1 ( A1-1 [ A2-1, …, An ( A1-n [ A2-n. If (iii) is true,

then there must be at least one value v such that v is a

member of A1-x [ A2-x, but not Ax, where 1 B x B n. v is a

member of A1-x [ A2-x if and only if v [ A1-x or v [ A2-x.

However, since we assumed that C is a lower bound of {C1,

C2}, it must be the case that C B C1 and C B C2. If

C B C1, then A1-x ( Ax; thus, a value that is not a

member of Ax cannot be a member of A1-x; hence, v [ A1-x

cannot be true. For similar reasons, v [ A2-x cannot also be

true. Therefore, it is not possible to find such a v and (iii)

cannot be true.

Thus, our assumption on the existence of such a C fails.

Therefore, we conclude that Cinf is the infimum of {C1, C2}

(i.e., Cinf = C1 ^ C2). h

Proof of Proposition 5 Let the set of all valid configu-

rations represented by M be S. Since M is not void, it

represents at least one valid product; thus, S will be non-

empty. As discussed above, S is equipped with the partial

order relation B ; thus, it is a partially ordered set. It fol-

lows from Proposition 4 that for any two configurations

C1 = (I1, E1, D1) and C2 = (I2, E2, D2) such that C1, C2 [
S, C1 ^ C2 exists and is equal to (I1 \ I2, E1 \ E2, Dinf),

where D1 = {a1 [ A1-1,…, an [ A1-n,…}, D2 = {a1 [ A2-1,

…, an [ A2-n, …}, and Dinf = {a1 [ A1-1 [ A2-1, …, an [
A1-n [ A2-n}. Therefore, S is a meet semilattice. h

References

1. Asikainen T, Mannisto T, Soininen T (2007) Kumbang: a domain

ontology for modelling variability in software product families.

Adv Eng Inform 21:23–40

2. Bagheri E, Ensan F (2014) Dynamic decision models for staged

software product line configuration. Requir Eng 19:187–212

3. Batory D (2005) Feature models, grammars, and propositional

formulas. In: Proceedings of the 9th International software

product line conference (SPLC’05), LNCS 3714, pp 7–20

4. Benavides D, Ruiz-Cortés A, Trinidad P (2004) Coping with

automatic reasoning on software product lines. Second Groningen

workshop on software variability management

5. Benavides D, Ruiz-Cortés A, Trinidad P (2005) Using constraint

programming to reason on feature models. In: Proceedings of the

17th international conference on software engineering and

knowledge engineering (SEKE’05), pp 677–682

6. Benavides D, Segura S, Ruiz-Cortés A (2010) Automated ana-

lysis of feature models 20 years later: A literature review. Inform

Syst 35:615–636

7. Benavides D, Trinidad P, Ruiz-Cortés A (2005) Automated rea-

soning on feature models. In: Proceedings of the 17th interna-

tional conference on advanced information systems engineering

(CAISE’05), LNCS 3520, pp 491–503

8. Bosch J, Florijn G, Greefhorst D, Kuusela J, Obbink H, Pohl K

(2001) Variability issues in software product lines. In: Proceed-

ings of the 4th international workshop on product family engi-

neering (PFE’01), pp 11–19

9. Botterweck G, Thiel S, Nestor D, Abid S, Cawley C (2008)

Visual tool support for configuring and understanding software

product lines. In: Proceedings of the 12th international software

product line conference (SPLC’08), IEEE computer society,

pp 77–86

10. Capilla R, Bosch J, Trinidad P, Ruiz-Cortés A, Hinchey M (2014)

An overview of dynamic software product line architectures and

techniques: observations from research and industry. J Syst Softw

91:3–23

11. Chen L, Babar MA (2011) A systematic review of evaluation of

variability management approaches in software product lines.

Inform Softw Tech 53:344–362

12. Cheng L, Wu C, Zhang Y, Wu H, Li M, Maple C (2012) A survey

of localization in wireless sensor network. Int J Distrib Sens N

962523(1–962523):12

13. Czarnecki K, Bednasch T, Unger P, Eisenecker U (2002) Gen-

erative programming for embedded software: an industrial

experience report. In: Proceedings of the ACM SIGPLAN/SIG-

SOFT conference on generative programming and component

engineering (GPCE’02), LNCS 2487, pp 156–172
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